141 research outputs found

    Long short-term memory networks for noise robust speech recognition

    Get PDF

    Speech recognition in noisy environments using a switching linear dynamic model for feature enhancement

    Get PDF
    The performance of automatic speech recognition systems strongly decreases whenever the speech signal is disturbed by background noise. We aim to improve noise robustness focusing on all major levels of speech recognition: feature extraction, feature enhancement, and speech modeling. Different auditory modeling concepts, speech enhancement techniques, training strategies, and model architectures are implemented in an in-car digit and spelling recognition task. We prove that joint speech and noise modeling with a global Switching Linear Dynamic Model (SLDM) capturing the dynamics of speech, and a Linear Dynamic Model (LDM) for noise, prevails over state-of-theart speech enhancement techniques. Furthermore we show that the baseline recognizer of the Interspeech Consonant Challenge 2008 can be outperformed by SLDM feature enhancement for almost all of the noisy testsets

    String-based audiovisual fusion of behavioural events for the assessment of dimensional affect

    Get PDF
    The automatic assessment of affect is mostly based on feature-level approaches, such as distances between facial points or prosodic and spectral information when it comes to audiovisual analysis. However, it is known and intuitive that behavioural events such as smiles, head shakes or laughter and sighs also bear highly relevant information regarding a subject's affective display. Accordingly, we propose a novel string-based prediction approach to fuse such events and to predict human affect in a continuous dimensional space. Extensive analysis and evaluation has been conducted using the newly released SEMAINE database of human-to-agent communication. For a thorough understanding of the obtained results, we provide additional benchmarks by more conventional feature-level modelling, and compare these and the string-based approach to fusion of signal-based features and string-based events. Our experimental results show that the proposed string-based approach is the best performing approach for automatic prediction of Valence and Expectation dimensions, and improves prediction performance for the other dimensions when combined with at least acoustic signal-based features

    Emotion on the Road—Necessity, Acceptance, and Feasibility of Affective Computing in the Car

    Get PDF
    Besides reduction of energy consumption, which implies alternate actuation and light construction, the main research domain in automobile development in the near future is dominated by driver assistance and natural driver-car communication. The ability of a car to understand natural speech and provide a human-like driver assistance system can be expected to be a factor decisive for market success on par with automatic driving systems. Emotional factors and affective states are thereby crucial for enhanced safety and comfort. This paper gives an extensive literature overview on work related to influence of emotions on driving safety and comfort, automatic recognition, control of emotions, and improvement of in-car interfaces by affect sensitive technology. Various use-case scenarios are outlined as possible applications for emotion-oriented technology in the vehicle. The possible acceptance of such future technology by drivers is assessed in a Wizard-Of-Oz user study, and feasibility of automatically recognising various driver states is demonstrated by an example system for monitoring driver attentiveness. Thereby an accuracy of 91.3% is reported for classifying in real-time whether the driver is attentive or distracted

    Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge

    Get PDF
    More than a decade has passed since research on automatic recognition of emotion from speech has become a new field of research in line with its 'big brothers' speech and speaker recognition. This article attempts to provide a short overview on where we are today, how we got there and what this can reveal us on where to go next and how we could arrive there. In a first part, we address the basic phenomenon reflecting the last fifteen years, commenting on databases, modelling and annotation, the unit of analysis and prototypicality. We then shift to automatic processing including discussions on features, classification, robustness, evaluation, and implementation and system integration. From there we go to the first comparative challenge on emotion recognition from speech-the INTERSPEECH 2009 Emotion Challenge, organised by (part of) the authors, including the description of the Challenge's database, Sub-Challenges, participants and their approaches, the winners, and the fusion of results to the actual learnt lessons before we finally address the ever-lasting problems and future promising attempts. (C) 2011 Elsevier B.V. All rights reserved.Schuller B., Batliner A., Steidl S., Seppi D., ''Recognising realistic emotions and affect in speech: state of the art and lessons learnt from the first challenge'', Speech communication, vol. 53, no. 9-10, pp. 1062-1087, November 2011.status: publishe
    corecore